3,258 research outputs found

    Probing quiet Sun magnetism using MURaM simulations and Hinode/SP results: support for a local dynamo

    Full text link
    We obtain information about the magnetic flux present in the quiet Sun by comparing radiative MHD simulations with Hinode/SP observations, with particular emphasis on the role of surface dynamo action. Simulation runs with different magnetic Reynolds numbers (Rm) are used together with observations at different heliocentric angles with different levels of noise. The results show that simulations with an imposed mixed-polarity field and Rm below the threshold for dynamo action reproduce the observed vertical flux density, but do not display a sufficiently high horizontal flux density. Surface dynamo simulations at the highest Rm feasible at the moment yield a ratio of the horizontal and vertical flux density consistent with observational results, but the overall amplitudes are too low. Based on the properties of the local dynamo simulations, a tentative scaling of the magnetic field strength by a factor 2 - 3 reproduces the signal observed in the internetwork regions. We find an agreement with observations at different heliocentric angles. The mean field strength in internetwork, implied by our analysis, is roughly 170 G at the optical depth unity. Our study shows that surface dynamo could be responsible for most of the magnetic flux in the quiet Sun outside the network given that the extrapolation to higher Rm is valid.Comment: accepted in A&

    Magnetic field intensification: comparison of 3D MHD simulations with Hinode/SP results

    Full text link
    Recent spectro-polarimetric observations have provided detailed measurements of magnetic field, velocity and intensity during events of magnetic field intensification in the solar photosphere. We consider the temporal evolution of the relevant physical quantities for three cases of magnetic field intensification in a numerical simulation. We determine the evolution of the intensity, magnetic flux density and zero-crossing velocity derived from the synthetic Stokes parameters by taking into account the spectral and spatial resolution of the spectropolarimeter (SP) on board Hinode. The three events considered show a similar evolution: advection of magnetic flux to a granular vertex, development of a strong downflow, evacuation of the magnetic feature, increase of the field strength and the appearance of the bright point. We find that synthetic and real observations are qualitatively consistent and, for one of the cases considered, agree very well also quantitatively. The effect of finite resolution (spatial smearing) is most pronounced in the case of small features, for which the synthetic Hinode/SP observations miss the bright point formation and also the high-velocity downflows during the formation of the smaller magnetic features.Comment: accepted in A&

    ACRIM-gap and total solar irradiance revisited: Is there a secular trend between 1986 and 1996?

    Full text link
    A gap in the total solar irradiance (TSI) measurements between ACRIM-1 and ACRIM-2 led to the ongoing debate on the presence or not of a secular trend between the minima preceding cycles 22 (in 1986) and 23 (1996). It was recently proposed to use the SATIRE model of solar irradiance variations to bridge this gap. When doing this, it is important to use the appropriate SATIRE-based reconstruction, which we do here, employing a reconstruction based on magnetograms. The accuracy of this model on months to years timescales is significantly higher than that of a model developed for long-term reconstructions used by the ACRIM team for such an analysis. The constructed `mixed' ACRIM - SATIRE composite shows no increase in the TSI from 1986 to 1996, in contrast to the ACRIM TSI composite.Comment: 4 figure

    Probing photospheric magnetic fields with new spectral line pairs

    Full text link
    The magnetic line ratio (MLR) method has been extensively used in the measurement of photospheric magnetic field strength. It was devised for the neutral iron line pair at 5247.1 A and 5250.2 A (5250 A pair). Other line pairs as well-suited as this pair been have not been reported in the literature. The aim of the present work is to identify new line pairs useful for the MLR technique and to test their reliability. We use a three dimensional magnetohydrodynamic (MHD) simulation representing the quiet Sun atmosphere to synthesize the Stokes profiles. Then, we apply the MLR technique to the Stokes V profiles to recover the fields in the MHD cube both, at original resolution and after degrading with a point spread function. In both these cases, we aim to empirically represent the field strengths returned by the MLR method in terms of the field strengths in the MHD cube. We have identified two new line pairs that are very well adapted to be used for MLR measurements. The first pair is in the visible, Fe I 6820 A - 6842 A (whose intensity profiles have earlier been used to measure stellar magnetic fields), and the other is in the infrared (IR), Fe I 15534 A - 15542 A. The lines in these pairs reproduce the magnetic fields in the MHD cube rather well, partially better than the original 5250 A pair. The newly identified line pairs complement the old pairs. The lines in the new IR pair, due to their higher Zeeman sensitivity, are ideal for the measurement of weak fields. The new visible pair works best above 300 G. The new IR pair, due to its large Stokes V signal samples more fields in the MHD cube than the old IR pair at 1.56 μ1.56\,\mum, even in the presence of noise, and hence likely also on the real Sun. Owing to their low formation heights (100-200 km above tau_5000=1), both the new line pairs are well suited for probing magnetic fields in the lower photosphere.Comment: Accepted for publication in Astronomy & Astrophysic

    Stokes diagnostics of simulated solar magneto-convection

    Get PDF
    We present results of synthetic spectro-polarimetric diagnostics of radiative MHD simulations of solar surface convection with magnetic fields. Stokes profiles of Zeeman-sensitive lines of neutral iron in the visible and infrared spectral ranges emerging from the simulated atmosphere have been calculated in order to study their relation to the relevant physical quantities and compare with observational results. We have analyzed the dependence of the Stokes-I line strength and width as well as of the Stokes-V signal and asymmetries on the magnetic field strength. Furthermore, we have evaluated the correspondence between the actual velocities in the simulation with values determined from the Stokes-I (Doppler shift of the centre of gravity) and Stokes-V profiles (zero-crossing shift). We confirm that the line weakening in strong magnetic fields results from a higher temperature (at equal optical depth) in the magnetic flux concentrations. We also confirm that considerable Stokes-V asymmetries originate in the peripheral parts of strong magnetic flux concentrations, where the line of sight cuts through the magnetopause of the expanding flux concentration into the surrounding convective donwflow.Comment: Astronomy & Astrophysics, in pres

    Fluxtube model atmospheres and Stokes V zero-crossing wavelengths

    Get PDF
    First results of the inversion of Stokes I and V profiles from plage regions near disk center are presented. Both low and high spatial resolution spectra of FeI 6301.5 and FeI 6302.5 A obtained with the Advanced Stokes Polarimeter (ASP) have been considered for analysis. The thin flux tube approximation, implemented in an LTE inversion code based on response functions, is used to describe unresolved magnetic elements. The code allows the simultaneous and consistent inference of all atmospheric quantities determining the radiative transfer with the sole assumption of hydrostatic equilibrium. By considering velocity gradients within the tubes we are able to match the full ASP Stokes profiles. The magnetic atmospheres derived from the inversion are characterized by the absence of significant motions in high layers and strong velocity gradients in deeper layers. These are essential to reproduce the asymmetries of the observed profiles. Our scenario predicts a shift of the Stokes V zero-crossing wavelengths which is indeed present in observations made with the Fourier Transform Spectrometer.Comment: To appear in ApJ Letters (1997) (in press

    The dark side of solar photospheric G-band bright points

    Full text link
    Bright small-scale magnetic elements found mainly in intergranular lanes at the solar surface are named bright points (BPs). They show high contrasts in Fraunhofer G-band observations and are described by nearly vertical slender flux tubes or sheets. A recent comparison between BP observations in the ultraviolet (UV) and visible spectral range recorded with the balloon-borne observatory SUNRISE and state-of-the-art magnetohydrodynamical (MHD) simulations revealed a kiloGauss magnetic field for 98% of the synthetic BPs. Here we address the opposite question, namely which fraction of pixels hosting kiloGauss fields coincides with an enhanced G-band brightness. We carried out 3D radiation MHD simulations for three magnetic activity levels (corresponding to the quiet Sun, weak and strong plage) and performed a full spectral line synthesis in the G-band. Only 7% of the kiloGauss pixels in our quiet-Sun simulation coincide with a brightness lower than the mean quiet-Sun intensity, while 23% of the pixels in the weak-plage simulation and even 49% in the strong-plage simulation are associated with a local darkening. Dark strong-field regions are preferentially found in the cores of larger flux patches that are rare in the quiet Sun, but more common in plage regions, often in the vertices of granulation cells. The significant brightness shortfall in the core of larger flux patches coincide with a slight magnetic field weakening. KiloGauss elements in the quiet Sun are on average brighter than similar features in plage regions. Almost all strong-field pixels display a more or less vertical magnetic field orientation. Hence in the quiet Sun, G-band BPs correspond almost one-to-one with kiloGauss elements. In weak plage the correspondence is still very good, but not perfect.Comment: Accepted for publication in Astronomy & Astrophysic

    Milne-Eddington inversions of the He I 10830 {\AA} Stokes profiles: Influence of the Paschen-Back effect

    Full text link
    The Paschen-Back effect influences the Zeeman sublevels of the He I multiplet at 10830 {\AA}, leading to changes in strength and in position of the Zeeman components of these lines. We illustrate the relevance of this effect using synthetic Stokes profiles of the He I 10830 {\AA} multiplet lines and investigate its influence on the inversion of polarimetric data. We invert data obtained with the Tenerife Infrared Polarimeter (TIP) at the German Vacuum Tower Telescope (VTT). We compare the results of inversions based on synthetic profiles calculated with and without the Paschen-Back effect being included. We find that when taking into account the incomplete Paschen-Back effect, on average 16% higher field strength values are obtained. We also show that this effect is not the main cause for the area asymmetry exhibited by many He I 10830 Stokes V-profiles. This points to the importance of velocity and magnetic field gradients over the formation height range of these lines.Comment: Accepted for publication in A&A on Jun 12th 200

    Magnetohydrostatic equilibrium in starspots: dependences on color (T_{eff}) and surface gravity (g)

    Full text link
    Temperature contrasts and magnetic field strengths of sunspot umbrae broadly follow the thermal-magnetic relationship obtained from magnetohydrostatic equilibrium. Using a compilation of recent observations, especially in molecular bands, of temperature contrasts of starspots in cool stars, and a grid of Kurucz stellar model atmospheres constructed to cover layers of sub-surface convection zone, we examine how the above relationship scales with effective temperature T_{eff}, surface gravity g and the associated changes in opacity of stellar photospheric gas. We calculate expected field strengths in starpots and find that a given relative reduction in temperatures (or the same darkness contrasts) yield increasing field strengths against decreasing T_{eff} due to a combination of pressure and opacity variations against T_{eff}.Comment: 4 pages, 3 figures, to appear in the Proceedings of IAUS 273: "Physics of Sun and Star Spots", eds. D.P. Choudhary and K. Strassmeier 2010, Cambridge University Pres

    Solar extreme ultraviolet variability of the quiet Sun

    Full text link
    The last solar minimum has been unusually quiet compared to the previous minima (since space-based radiometric measurements are available). The Sun's magnetic flux was substantially lower during this minimum. Some studies also show that the total solar irradiance during the minimum after cycle 23 may have dropped below the values known from the two minima prior to that. For chromospheric and coronal radiation, the situation is less clear-cut. The Sun's 10.7\,cm flux shows a decrease of ∟4%\sim4\% during the solar minimum in 2008 compared to the previous minimum, but \ion{Ca}{II} K does not. Here we consider additional wavelengths in the extreme ultraviolet (EUV), specifically transitions of \ion{He}{I} at 584.3\,\AA\ and \ion{O}{V} at 629.7\,\AA , of which the CDS spectrometer aboard SOHO has been taking regular scans along the solar central meridian since 1996. We analysed this unique dataset to verify if and how the radiance distribution undergoes measurable variations between cycle minima. To achieve this aim we determined the radiance distribution of quiet areas around the Sun centre. Concentrating on the last two solar minima, we found out that there is very little variation in the radiance distribution of the chromospheric spectral line \ion{He}{I} between these minima. The same analysis shows a modest, although significant, 4\% variation in the radiance distribution of the transition region spectral line \ion{O}{V}. These results are comparable to those obtained by earlier studies employing other spectral features, and they confirm that chromospheric indices display a small variation, whereas in the TR a more significant reduction of the brighter features is visible
    • …
    corecore